

Mark Scheme (Results)

January 2023

Pearson Edexcel International GCSE In Mathematics A (4MA1) Paper 1F

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023 Question Paper Log Number P72435A Publications Code 4MA1_1F_MS_2023 All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

• Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

• Abbreviations

- o cao correct answer only
- ft follow through
- o isw ignore subsequent working

- SC special case
- oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- \circ awrt answer which rounds to
- o eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

International G	CSE Maths			
Apart from Questi	ons 8, 12a, 12b, 15, 17 and 18 (where the mark scheme	e states otherwise), the co	orrect answ	ver, unless clearly obtained by an incorrect
method, should be	taken to imply a correct method.			
Q	Working	Answer	Mark	Notes
1 (a)		Hamlet	1	B1
(b)		Henry V	1	B1
		and		
		Julius Caesar		
(c)		26 450	1	B1
(d)		Twenty one	1	B1
		thousand and fifty		
		five		
				Total 4 marks

2	$5 \times 1000 (= 5000)$ or		4	M1
	350 ÷ 1000 (= 0.35)			
	"5000" ÷ 350 (= 14.2857) or			M1 Allow their 5000 or their 0.35
	5 ÷ "0.35" (= 14.2857) or 14			
	350 × "14" or 4900 or			M1
	$0.35 \times "14"$ or "0.49" or			
	$(14.28(57) - 14) \times 100$			
	Correct answer scores full marks (unless from	100 g or 0.1 kg		A1
	obvious incorrect working)			
				Total 4 marks

2 ALT	$5 \times 1000 (= 5000)$ or $350 \div 1000 (= 0.35)$		4	M1
	350, 700, 1050,, 4900 or 0.35, 0.7, 1.05,, 4.9 350, 700, 1050,, 4900 or 0.35, 0.7, 1.05,, 4.9			M1 for repeated addition to at least 4900 or 4.9 (allow one error) or for repeated subtraction to at least 100 or 0.1 (allow one error) M1 for repeated addition to 4900 or 4.9 (no errors) or clearly indicated e.g. at the end of their list, circled, underlined etc or for repeated subtraction to 100 or 0.1 (no errors) clearly indicated e.g. at the end of their list, circled, underlined etc
	<i>Correct answer scores full marks (unless from obvious incorrect working)</i>	100 g or 0.1 kg		A1
				Total 4 marks

3 (a)		I	Pattern	numl	per 4	Correct shape	1	B1
(b)	1 2	3	4	5		10 and 13	1	B1 for 10 and 13
	1 4	7	10	12				
	1 4	/	10	13				
(c)						22	1	B1
(d)	10 13 16	19 22	25 28	31 34	37 40 43 or	Correct reason	1	B1 for correct reason, for e.g.
	$3 \times 15 -$	2(=4)	3) and	3×14	-2 (= 40) or			
	(42 + 2)	÷ 3 (=	14.6.)				3n - 2 = 42 does not have a whole
								42 is a multiple of 3 or
								42 is in the 3 times table or
								40 and 43 are in the sequence or
								40 is in the sequence and $40 + 3$ does not
								equal 42 or
								its 1 less than 43
								Total 4 marks

4 (a)	80	1	B1
(b)	thousandth	1	B1 oe e.g. 3 thousandth, 1000^{th} , $\frac{1}{1000}$ $\frac{3}{1000}$, 0.003
(c)	0.04 0.042 0.2 0.204 0.24	1	B1
(d)	25.79	1	B1
(e)	36	1	B1
			Total 5 marks

5 (a)(i)				A cross at 0.5	1	B1
(ii)				unlikely	1	B1
(b)	Type of rice	Tally	Frequency		2	B2 for all frequencies correct (B1 for 2 frequencies correct or 2 tallies correct or 1 tally with its frequency
	arborio	1111	4			correct)
	basmati	11#171	6			
	jasmine	11441	7			
	wild	III	3			
						Total 4 marks

6	$\frac{1}{4} \times 600 \ (= 150) \ \text{oe or} \ \frac{3}{4} \times 600 \ (= 450) \ \text{oe}$		4	M1
	"450" × 13.60 (= 6120)			M1
	(7200 – "6120") ÷ "150" or 1080 ÷ "150"			M1
	Correct answer scores full marks (unless from obvious incorrect working)	7.2(0)		A1 SC B2 for 11.46(666)
				Total 4 marks

7	(a)		45 <i>pk</i>	1	B1 accept 45 <i>kp</i>
	(b)		11e - 5f	2	B2 for $11e - 5f$
					(B1 for 11 <i>e</i> or –5 <i>f</i>)
	(c)	$2d = 16 - 7$ or $2d = 9$ or $d + \frac{7}{2} = \frac{16}{2}$ oe or		2	M1
		$(16-7) \div 2 \text{ or } 9 \div 2$ 2			
		Correct answer scores full marks (unless from obvious incorrect working)	4.5		A1 accept $\frac{9}{2}$ or $4\frac{1}{2}$
					Total 5 marks

8	[6, 6.4]		4	M1 accept in the range $6 - 6.4$
	"[6, 6.4]" × 80 (= [480, 512])			M1
	590 – "[480, 512]" (= [110, 78])			M1
	Working required	78 - 110		A1 dep on M1
				Total 4 marks

8	[6, 6.4]		4	M1 accept in the range $6 - 6.4$
ALT				
	$(590 \div 80) - [6, 6.4]$ (= [0.975, 1.375]) or			M1
	7.375 – "[6, 6.4]" (= [0.975, 1.375])			
	"[0.975, 1.375]" × 80 (= [78, 110])			M1
	Working required	78 - 110		A1 dep on M1
				Total 4 marks

9	(a)			Sp	inne	er A		Correct scores	2	B2 for all scores correct (B1 for 3 or 4 scores correct)
				1	2	3]			
			1	1	2	3				
		Sninner	2	2	4	6				
		B	3	3	6	9				
			4	4	8	12				
	(b)							$\frac{4}{12}$	1	B1 ft oe accept 0.33(33)
										Total 3 marks

10	$30 \times 250 (-75) \approx 250$		3	M1
	$\frac{100}{100} \times 250 (= 75) \text{ de or}$			
	250 -160 (= 90)			
	"90" – "75" or "75" – "90"			M1
	Correct answer scores full marks (unless from	15		A1 allow –15
	obvious incorrect working)			
				Total 3 marks

11	x -2 -1 0 1 2 3	Correct line between	3	B3 for a correct line between $x = -2$ and
	y 5 3 1 -1 -3 -5	x = -2		<i>x</i> = 3
		and		
		<i>x</i> = 3		(B2 for a correct straight line segment
				through at least 3 of (-2, 5) (-1, 3) (0, 1)
	(-2, 5)(-1, 3)(0, 1)(1, -1)(2, -3)(3, -5)			(1, -1) (2, -3) (3, -5)
				or
				for all of $(-2, 5)(-1, 3)(0, 1)(1, -1)(2, $
				-3) (3, -5) plotted but not joined)
				(B1 for at least 2 correct points stated
				(may be in a table) or plotted or for a line
				drawn with a negative gradient through
				(0, 1) or for a line with a gradient of -2)
				Total 3 marks

12 (a)	e.g. $\frac{21}{24} - \frac{10}{24}$ or $\frac{84}{96} - \frac{40}{96}$ or $\frac{21n}{24n} - \frac{10n}{24n}$		2	M1 for finding a common denominator of 24 or a multiple of 24 with at least one fraction correct
	e.g. $\frac{21}{24} - \frac{10}{24} = \frac{11}{24}$ $\frac{84}{96} - \frac{40}{96} = \frac{44}{96} = \frac{11}{24} \text{ or } \frac{21n}{24n} - \frac{10n}{24n} = \frac{11n}{24n} = \frac{11}{24}$	Shown		A1 dep on M1, for a complete method leading to $\frac{11}{24}$
(b)	2, 5, 10, 13, 26, 65 and 2, 4, 8, 16, 26, 52, 104 or 2, 5, 13 and 2, 2, 2, 2, 13 oe 5 2 13 8 13 13 13 13 13 13 13 13		2	M1 for starting to list at least two factors of each number excluding 1 and <i>n</i> (Two factors may be written as, for e.g, $130 \div 26 = 5$ and $208 \div 26 = 8$ oe or $130 \div 13 = 10$ and $208 \div 13 = 16$ etc) or 2, 5, 13 and 2, 2, 2, 2, 13 seen (may be in a factor tree or a ladder diagram and ignore 1) or a fully correct Venn diagram oe or other clear method, e.g, table
	Working required	26		A1dep on M1
				Total 4 marks

13 (a)	$18 - 3 \times 5$ or $18 - 15$ or $18 + 15$		2	M1
	Correct answer scores full marks (unless from	33		A1
	obvious incorrect working)			
(b)	d - 10 = 3x oe or $-3x = -d + 10$ or		2	M1
	$\frac{d}{3} = x + \frac{10}{3}$ oe or $\frac{d-10}{3}$ oe			
	Correct answer scores full marks (unless from obvious incorrect working)	$x = \frac{d - 10}{3}$		A1 accept $x = \frac{d}{3} - \frac{10}{3}$ oe or $x = \frac{-d + 10}{-3}$ oe
				(must see $x =$ on answer line or in working)
				Total 4 marks

14 (a)	Correct rotation	2	B2 for a fully correct rotation at (1, 2) (3, 2) (3, 5) (B1 for the triangle in correct orientation and size or rotated 90° clockwise about the origin (-1, -2) (-3, -2) (-3, -5))
(b)	Enlargement, scale factor 3 and (0,0)	2	B2 for enlargement, scale factor 3 and (0,0) (B1 for 2 correct from for enlargement, enlarge, etc so long as no mention of rotation, reflection or translation, flip, move etc. or SF 3, three times etc. or (0, 0) or Origin or 0 stated. Accept about, from etc. with no mention of line, or column vector.)
			Total 4 marks

15	$\frac{1}{2} \times 4.8 \times 2.5 (= 6)$ oe or		5	M1
	$3 \times 4.8 \ (= 14.4) \ oe \ or$			
	$4.8 \times (3 + 2.5) (= 26.4)$			
	$\frac{1}{2} \times 4.8 \times 2.5 (= 6)$ oe and			M1
	$3 \times 4.8 (= 14.4)$ oe			
	or			
	$[4.8 \times (3 + 2.5)] - [0.5 \times 2.4 \times 2.5 + 0.5 \times 2.4 \times 2.5]$ or			
	$^{2}20.4^{-} - 6 (= 20.4) \text{ or}$			M1 dan on M1 for a mathed to find the
	$(0 + 14.4) \div 1.8 (-11.5) \text{ or}$			number of tins for their area
				number of this for their area
	$\frac{3}{1.8} + \frac{3}{1.8} (3.3 + 8 = 11.3)$			
	"12" × 16.4(0) (= 196.8(0))			M1 dep on previous M1 for a method to
	or 190 ÷ 16.4 (=11.58) and "12"			calculate the cost for their number of tins
				(their number of tins must be rounded up
				to the next integer)
				or
				compared with their number of tins
	Working required	No and		A1 dep on M2
	, chang required	196.8(0) or		
		11.58 and		
		12 seen		SC B1 for 190 ÷ 16.4(0) if M0 scored
				Total 5 marks

16			4	M2 for at least 4 correct products added (need not be evaluated) or
	or			If not M2 then award:
	66 + 450 + 690 + 630 + 324 (= 2160) [lower bound products are: 0, 300, 552, 540, 288] [upper bound products are: 132, 600, 828, 720, 360]			M1 for consistent use of value within interval (including end points) for at least 4 products which must be added or correct midpoints used for at least 4 products and not added
	"2160" ÷ "80"			M1 dep on at least M1
				Allow division by their Σf provided addition or total under column seen
	Correct answer scores full marks (unless from obvious incorrect working)	27		A1
				Total 4 marks

17	$6-12x \text{ or} 2-4x = \frac{5}{3} - \frac{8}{3}x$		3	M1 for expansion of bracket on the LHS or dividing the RHS by 3 with two terms
	6-5 = 12x - 8x or 1 = 4x or -12x+8x=5-6 oe or -4x = -1 or $\frac{8}{3}x - 4x = \frac{5}{3} - 2 \text{ oe or } 2 - \frac{5}{3} = -\frac{8}{3}x + 4x \text{ oe}$			M1 ft (dep on 4 terms) for terms in <i>x</i> on one side of equation; number terms on the other
	Working required	$\frac{1}{4}$		A1 oe dep on M1 awarded
				Total 3 marks

18	Two pairs of intersecting arcs with equal radii centre <i>A</i> and <i>B</i>		2	M1 for arcs that intersect within or on the guidelines or correct perpendicular
	Working required	Bisector with construction arcs		A1 for a fully correct bisector with two intersecting arcs
				Total 2 marks

19	$3 \times 180 (= 540) \text{ or}$ 360 - [(180 - 90) + (180 - 135) + (180 - 67) + (180 - 119)] (= 51) or 360 - (90 + 45 + 113 + 61) (= 51)		3	M1
	90 + 135 + 67 + 119 + $x = 540$ " oe 411 + $x = 540$ " oe or 540" - (90 + 135 + 67 + 119) or 3 × 180 - (90 + 135 + 67 + 119) oe or 540 - 411 or 180 - 51" oe			M1
	<i>Correct answer scores full marks (unless from obvious incorrect working)</i>	129		A1
				Total 3 marks

20	$2:3:15$ oe or 20 or $(1:5) \times 3$ or		3	M1
	(1:5=) 3:15 or			
	2 <i>n</i> : 3 <i>n</i> : 15 <i>n</i> e.g. 4 : 6 : 30 or			
	G(reen) = 2, $O(range) = 3$, $Y(ellow) = 15$			
	$\frac{2}{"20"}$ 280 oe or 14 × 2 or			M1
	$\frac{2}{"2"+"3"+"15"}$ 280 oe or			
	$\frac{2n}{"2n"+"3n"+"15n"}$ 280 oe			
	Correct answer scores full marks (unless from	28		A1 or 28 : 42 : 210 or 28 , 42 , 210
	obvious incorrect working)			If not in this order must be labelled
				correctly
				Total 3 marks

21 (a)	$18\ 000 + 14 \times 1160 (= 34\ 240) \text{ oe or} \\18\ 000 + 16\ 240 (= 34\ 240)$		4	M1
	$\frac{"34\ 240" - 32\ 000\ (= 2240)\ or}{\frac{"34\ 240"}{32\ 000}\ (= 1.07)}$			M1
	$\frac{"2240"}{32000} (\times 100) \text{ or}$ $\frac{"34240"}{32000} \times 100 (= 107) \text{ or}$			M1
	"1.07" – 1 (= 0.07)			
	Correct answer scores full marks (unless from obvious incorrect working)	7		A1
(b)	e.g. 1 - 0.15 (= 0.85) or 100(%) - 15(%) (= 85(%))		3	M1
	e.g. 39 865 ÷ 0.85 or 39 865 ÷ 85 × 100 oe			M1
	Correct answer scores full marks (unless from obvious incorrect working)	46 900		A1
				Total 7 marks

22	1 - (0.24 + 0.4) (= 0.36) oe or		4	M1
	3x + x = 1 - (0.24 + 0.4) oe			
	$48 \div 0.24 (= 200)$ or			M1
	" (0.36) " $\div 4 (= 0.09)$ or			
	" (0.36) " $\div 4 \times 3 (= 0.27)$			
	"0.27" × "200" or			M1 for a complete method
	"200" × "0.36" ÷ 4 × 3			-
	("200" – 48 – "80") ÷ 4 × 3			
		54		A1
				Total 4 marks

22	$1 (0.24 \pm 0.4) (-0.26)$ as an		4	M1
	1 - (0.24 + 0.4) (= 0.36) oe or		4	M1
ALT	3x + x = 1 - (0.24 + 0.4) oe			
	$48 \div 24 (= 2)$ oe or			M1
	$\left(\frac{"0.36"}{4} \times 3\right) \div 0.24 \left(=\frac{9}{8} = 1.125\right)$ oe or			
	$\left(\frac{"36"}{4} \times 3\right) \div 24 \left(=\frac{9}{8} = 1.125\right) \text{oe}$			
	"2"× $\left(\frac{"36"}{4}\times 3\right)$ oe or			M1 for a complete method
	" $\frac{9}{8}$ " × 48 oe or			
	$("27" \div 24) \times 48 \text{ oe}$			
	Correct answer scores full marks (unless from obvious incorrect working)	54		A1
				Total 4 marks

23	$\cos 50 = \frac{18}{(AB)} \text{ or } \sin 40 = \frac{18}{(AB)} \text{ or}$ $\frac{(AB)}{\sin 90} = \frac{18}{\sin 40}$		5	M1	M2 for $(AB =)\sqrt{18^2 + (18 \tan 50)^2}$ oe (= 28.0030) or 28
	$(AB =) \frac{18}{\cos 50} (= 28.0030)$ oe or 28 or $(AB =) \frac{18}{\sin 40} (= 28.0030)$ oe or 28			M1	
	$\frac{1}{2} \times \pi \times "28.0030" (= 43.9) \text{ oe or } 44$ $\pi \times "28.0030" (= 87.9) \text{ oe or } 88$			M1 for u Allow an scored	use of πd or $\frac{1}{2}\pi d$ oe by value of $AB > 18$ if M2 not
	"28" + "43.9" (= 71.9900) or "28" + "44"			M1ft from previous M1 Allow <i>their</i> $d + their \frac{1}{2}\pi d$	
	Correct answer scores full marks (unless from obvious incorrect working)	72		A1 awrt	72
					Total 5 marks

r					
24	(a)		0.000 625	1	B1
	(b)	25 000 000 oe e.g. 25×10^6 or 0.25×10^8		2	M1
		or			
		$2.5 \times 10^n n \neq 7$			
		Correct answer scores full marks (unless from	$2.5 imes 10^7$		A1
		obvious incorrect working)			
					Total 3 marks

25	(a)	$(y\pm 6)(y\pm 8)$ or $y(y+6)-8(y+6)$ or y(y-8)+6(y-8)		2	M1 or for $(y \pm a)(y \pm b)$ where $ab = -48$ or $a + b = -2$
			(y+6)(y-8)		A1 oe Allow any letter for <i>y</i>
	(b)		<i>x</i> ≤ 3	1	B1 allow $3 \ge x$ Allow any letter for x
	(c)	6-14 > 12w-7w oe or $7w-12w > 14-6$ oe		3	M1 Condone = rather than > or any other sign for this mark.
		$-8 > 5w \text{ or } -5w > 8 \text{ or } -w > \frac{8}{5} \text{ or } w > -\frac{8}{5} \text{ or}$ $w = -\frac{8}{5} \text{ oe}$			M1 Condone = rather than > or any other sign for this mark.
		Correct answer scores full marks (unless from obvious incorrect working)	$w < -\frac{8}{5}$		A1 oe accept $-\frac{8}{5} > w$ Must have correct sign on answer line dep on M1 (sight of correct answer in working space and just $(w =) -\frac{8}{5}$ oe on answer line gains M2 only)
					Total 6 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom